Skip to main content


System Requirements#


In order to function properly in a production environment, hyperglass leverages Gunicorn as an application-layer HTTP server. You don't really need to know anything about Gunicorn to use hyperglass, but there is one important factor: each Gunicorn "worker" (a process, or thread, in essence) directly maps to the number of CPU cores on your hyperglass system. Per the Gunicorn docs, hyperglass uses the conservative value of 2x workers per CPU core.

To determine the number of CPU cores on the system, Python's multiprocessing library, and the number of cores returned does factor in hyperthreading. For example, if your system has 4 cores provisioned, and the processors support hyperthreading, hyperglass will see this as 8 cores, and will provision 2 workers per core, for a final result of 16 workers.

Why does this matter?#

While hyperglass is, to the extent possible, fully asynchronous (which means tasks may be run while waiting on other tasks to complete), this asynchronism is currently only applicable to each request. This means that with a single worker process, while one request is being processed, a second request must wait until the first request completes. If the first request is long-running for whatever reason, the second request may time out (this also applies to running multiple queries at the same time, in the same session).

To combat this, hyperglass uses the above worker strategy. Ultimately, it's important to provision the appropriate number of CPU cores, corresponding to the number of concurrent sessions you might expect to have in your environment (keeping in mind that if your system supports hyperthreading, each core equates to two workers).


When debug is set to true, the number of workers is set to 1.


Testing shows that hyperglass is extremely memory efficient at runtime. For example, running 4 simulations BGP Route queries, with two devices utilizing hyperglass-agent, and two devices utilizing SSH, the server increased RAM utilization by about 20MB during execution, and went back down afterwards.

However, at build time, there are some fairly memory-intensive tasks which will time out or cause strange errors without the proper amount of RAM. Testing suggests 2GB of RAM is sufficient, however 4GB is the ideal minimum amount of RAM.


At build, hyperglass consumes approximately 196 MB of storage. 194 MB of this is front-end dependencies, which are downloaded and installed when running a UI build. The other 2 MB is the hyperglass code itself. Once again, the minimum system requirements for most Linux distributions should be sufficient.


More than likely, you'll want to run hyperglass as a background system service. systemd is one of the most common ways of running services on Linux. To run hyperglass as a systemd service, create a file named hyperglass.service in your installation directory and add following to it:

# Replace the above with Requires=redis for CentOS
User=<user or root>
Group=<user or root>
ExecStart=<path to hyperglass> start

Replace <user or root> with whichever user you're running hyperglass as. For example, if you're running hyperglass as a non-root user, you probably used pip3 install hyperglass (without sudo) to install hyperglass, and you're probably using ~/hyperglass as your installation directory. However, if you're running hyperglass as root, you probably used sudo pip3 install hyperglass to install hyperglass, and you're probably using /etc/hyperglass as your installation directory.

Systemd requires an absolute path for executables. This means you can't just put hyperglass start in the ExecStart field, it needs to be the full path. The easiest way to get this is to run which hyperglass, which will output the full path. It should look something like /home/username/.local/bin/hyperglass or /usr/local/bin/hyperglass.

After adding the file, run the following:

# Replace <systemd file> with the path to the systemd file you just created.
sudo ln -s <systemd file> /etc/systemd/system/hyperglass.service
# Tell systemd to re-look at its service files, since you just added one.
sudo systemctl daemon-reload
# Tell systemd to run hyperglass on system startup.
sudo systemctl enable hyperglass
# Start the hyperglass service.
sudo systemctl start hyperglass
# Check the status of the hyperglass service.
sudo systemctl status hyperglass
Checking the status

The first time hyperglass starts up, it will run through a UI build process, which will take a little time. You may have to wait a couple of minutes in between each check on hyperglass's status.

Reverse Proxy#

You'll want to run hyperglass behind a reverse proxy in production to serve the static files more efficiently and offload SSL. Any reverse proxy should work, but hyperglass has been specifically tested with Caddy and NGINX. Sample configs for both can be found below.


The following file can be placed anywhere, and referenced at runtime with sudo caddy run -config <file name>. The highlighted lines should be replaced with your installation's specific variables.

Caddy {
file_server {
root /etc/hyperglass/static/ui
index /etc/hyperglass/static/ui/index.html
file_server /custom {
root /etc/hyperglass/static/custom
file_server /images {
root /etc/hyperglass/static/images
reverse_proxy localhost:8001

The tls directive will tell Caddy to automatically use Let's Encrypt to generate SSL certificates for hyperglass.


The following file can be placed at /etc/nginx/sites-enabled/hyperglass. It supports IPv6, and will automatically redirect to HTTPS. The highlighted lines should be replaced with your installation's specific variables.

server {
listen 80;
listen [::]:80;
return 301 https://$host$request_uri;
server {
listen [::]:443 ssl ipv6only=on;
listen 443 ssl;
ssl_certificate <path to cert chain>
ssl_certificate_key <path to key>
client_max_body_size 2M;
root /etc/hyperglass/static;
location / {
try_files $uri $uri/ /ui /ui/$uri =404;
index /ui/index.html;
location /openapi.json {
try_files $uri @proxy_to_app;
location /custom/ {
try_files $uri $uri/ /custom;
location /images/ {
try_files $uri $uri/ /images;
location /api {
try_files $uri @proxy_to_app;
location @proxy_to_app {
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_pass http://[::1]:8001;